Genome-based cluster deletion reveals an endocrocin biosynthetic pathway in Aspergillus fumigatus.
نویسندگان
چکیده
Endocrocin is a simple anthraquinone frequently identified in extracts of numerous fungi. Several biosynthetic schemes for endocrocin synthesis have been hypothesized, but to date, no dedicated secondary metabolite gene cluster that produces this polyketide as its major metabolite has been identified. Here we describe our biosynthetic and regulatory characterization of the endocrocin gene cluster in Aspergillus fumigatus. This is the first report of this anthraquinone in this species. The biosynthetic genes required for endocrocin production are regulated by the global regulator of secondary metabolism, LaeA, and encode an iterative nonreducing polyketide synthase (encA), a physically discrete metallo-β-lactamase type thioesterase (encB), and a monooxygenase (encC). Interestingly, the deletion of a gene immediately adjacent to encC, termed encD and encoding a putative 2-oxoglutarate-Fe(II) type oxidoreductase, resulted in higher levels of endocrocin production than in the wild-type strain, whereas overexpression of encD eliminated endocrocin accumulation. We found that overexpression of the encA transcript resulted in higher transcript levels of encA-D and higher production of endocrocin. We discuss a model of the enc cluster as one evolutionary origin of fungal anthraquinones derived from a nonreducing polyketide synthase and a discrete metallo-β-lactamase-type thioesterase.
منابع مشابه
Low-Volume Toolbox for the Discovery of Immunosuppressive Fungal Secondary Metabolites
The secondary metabolome provides pathogenic fungi with a plethoric and versatile panel of molecules that can be deployed during host ingress. While powerful genetic and analytical chemistry methods have been developed to identify fungal secondary metabolites (SMs), discovering the biological activity of SMs remains an elusive yet critical task. Here, we describe a process for identifying the i...
متن کاملNonribosomal peptide synthetase genes pesL and pes1 are essential for Fumigaclavine C production in Aspergillus fumigatus.
The identity of metabolites encoded by the majority of nonribosomal peptide synthetases in the opportunistic pathogen, Aspergillus fumigatus, remains outstanding. We found that the nonribosomal peptide (NRP) synthetases PesL and Pes1 were essential for fumigaclavine C biosynthesis, the end product of the complex ergot alkaloid (EA) pathway in A. fumigatus. Deletion of either pesL (ΔpesL) or pes...
متن کاملAn ergot alkaloid biosynthesis gene and clustered hypothetical genes from Aspergillus fumigatus.
The ergot alkaloids are a family of indole-derived mycotoxins with a variety of significant biological activities. Aspergillus fumigatus, a common airborne fungus and opportunistic human pathogen, and several fungi in the relatively distant taxon Clavicipitaceae (clavicipitaceous fungi) produce different sets of ergot alkaloids. The ergot alkaloids of these divergent fungi share a four-member e...
متن کاملA developmentally regulated gene cluster involved in conidial pigment biosynthesis in Aspergillus fumigatus.
Aspergillus fumigatus, a filamentous fungus producing bluish-green conidia, is an important opportunistic pathogen that primarily affects immunocompromised patients. Conidial pigmentation of A. fumigatus significantly influences its virulence in a murine model. In the present study, six genes, forming a gene cluster spanning 19 kb, were identified as involved in conidial pigment biosynthesis in...
متن کاملHistidine biosynthesis plays a crucial role in metal homeostasis and virulence of Aspergillus fumigatus
Aspergillus fumigatus is the most prevalent airborne fungal pathogen causing invasive fungal infections in immunosuppressed individuals. The histidine biosynthetic pathway is found in bacteria, archaebacteria, lower eukaryotes, and plants, but is absent in mammals. Here we demonstrate that deletion of the gene encoding imidazoleglycerol-phosphate dehydratase (HisB) in A. fumigatus causes (i) hi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 78 12 شماره
صفحات -
تاریخ انتشار 2012